

Welcome to taperable_helix’s documentation!

	Package Docs 0.8.17

	Installation
	Stable release

	Test release from testpypi

	From sources

	Uninstall

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

Indices and tables

	Index

	Module Index

	Search Page

Package Docs 0.8.17

	
class taperable_helix.HelixLocation(radius=None, horz_offset=0, vert_offset=0)[source]

	
	
radius: Optional[float] = None

	radius of helix if none h.radius

	
horz_offset: float = 0

	horizontal offset added to radius then x and y calculated

	
vert_offset: float = 0

	vertical added to z of radius

	
class taperable_helix.Helix(radius, pitch, height, taper_out_rpos=0, taper_in_rpos=1, inset_offset=0, first_t=0, last_t=1)[source]

	This class represents a taperable Helix.

The required attributes are radius,
pitch and height. Thse attributes create simple single line helix.
But the primary purpose for Helix is to create a set of helical “wires”
using non-zero values for taper_rpos, horz_offset and vert_offset to
define solid helixes that can taper at each end to a point.

This is useful for creating internal and external threads for nuts and
bolts. This is accomplished by invoking helix() multiple times with
same radius, pitch, taper_rpos, inset_offset, first_t, and last_t.
But with different HelixLocation radius, horz_offset and vert_offset.

Each returned function will then generate a helix defining an edge
of the thread. The edges can be used to make faces and subsequently
a solid of the thread. This can then be combined with the “core” objects
which the threads are “attached” using a “union” operator.

	
radius: float

	radius of the basic helix.

	
pitch: float

	pitch of the helix per revolution. I.e the distance between the
height of a single “turn” of the helix.

	
height: float

	height of the cyclinder containing the helix.

	
taper_out_rpos: float = 0

	taper_out_rpos is a decimal number with an inclusive range of 0..1
such that (taper_out_rpos * t_range) defines the t value where tapering
out ends, it begins at t == first_t. A ValueError exception is raised
if taper_out_rpos < 0 or > 1 or taper_out_rpos > taper_in_rpos.
Default is 0 which is no out taper.

	
taper_in_rpos: float = 1

	taper_in_rpos: is a decimal number with an inclusive range of 0..1
such that (taper_in_rpos * t_range) defines the t value where tapering
in begins, it ends at t == last_t. A ValueError exception is raised
if taper_out_rpos < 0 or > 1 or taper_out_rpos > taper_in_rpos.
Default is 1 which is no in taper.

	
inset_offset: float = 0

	inset_offset: the helix will start at z = inset_offset and will
end at z = height - (2 * inset_offset). Default 0.

	
first_t: float = 0

	first_t is the first t value passed to the returned function. Default 0

	
last_t: float = 1

	last_t is the last t value passed to the returned function. Default 1

	
helix(hl=None)[source]

	This function returns a Function that is used to generates points
on a helix.

It takes an optional HelixLocation which refines the location of the
final helix when its tapered. If HelixLocation is None then the radius
is Helix.radius and horz_offset and vert_offset will be 0. If its not None
HelixLocation.radius maybe None, in which case Helix.radius will be used.
and HelixLocation.horz_offset will be added to the radius and used to
calculate x and y. The HelixLocation.vert_offset will be added to z.

This function returns a function, f. The funciton f that takes one parameter,
an inclusive value between first_t and last_t. We then define
t_range=last_t-first_t and the rel_height=(last_t-t)/t_range. The rel_height
is the relative position along the “z-axis” which is used to calculate function
functions returned tuple(x, y, z) for a point on the helix.

Credit: Adam Urbanczyk from cadquery [forum post](https://groups.google.com/g/cadquery/c/5kVRpECcxAU/m/7no7_ja6AAAJ)

	Parameters

	hl (Optional[HelixLocation]) – Defines a refinded location when the helix is tapered

	Return type

	Callable[[float], Tuple[float, float, float]]

	Returns

	A function which is passed “t”, an inclusive value between first_t
and last_t and returns a 3D point (x, y, z) on the helix as a
function of t.

Installation

Stable release

To install taperable-helix, run this command in your terminal:

pip install taperable-helix

This is the preferred method to install taperable-helix, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

Test release from testpypi

To install taperable-helix from testpypi, run this command in your terminal:

pip install --index-url https://test.pypi.org/simple/ taperable-helix

From sources

The sources for taperable_helix can be downloaded from the Github repo [https://github.com/winksaville/taperable_helix].

You can either clone the public repository:

git clone git://github.com/winksaville/py-taperable-helix taperable-helix
cd taperable-helix

Or download the tarball

curl -OJL https://github.com/winksaville/py-taperable-helix/releases/v0.8.17.tar.gz

Once you have a copy of the source, you can install it with:

python setup.py install

Or if you want to install in editable mode for development:

make install-dev

pip install -e . -r dev-requirements.txt

Uninstall

pip uninstall taperable-helix

Usage

To use taperable_helix in a project:

import taperable_helix

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at taperable-helix issues [https://github.com/winksaville/py-taperable-helix/issues]

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

taperable_helix could always use more documentation, whether as part of the
official taperable_helix docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at taperable-helix issues [https://github.com/winksaville/py-taperable-helix/issues]

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up taperable-helix [https://github.com/winksaville/py-taperable-helix.git] for local development.

	Fork the taperable_helix repo on GitHub.

	Clone your fork locally:

git clone git@github.com:your_name_here/taperable_helix.git

	Instantiate an (virtual) enviorment which supports python3.7,
isort, black, flake8 and bump2version. Using make install-dev will
install appropriate development dependencies:

<instantiate your virtual environment if necessary>
cd taperable_helix/
make install-dev

	Create a branch for local development:

 git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes are formantted
correctly and pass the tests:

make format
make test

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.7 and 3.8.

Tips

To run a particular test execute pytest with the test file to run followed
by a ::xxx where xxx is the test name. See pytest usage [https://docs.pytest.org/en/stable/usage.html] for more info:

pytest tests/test_taperable_helix.py::test_helix_torp_0pt1_tirp_0pt9_ho_0pt2

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed.
Then run and validate that test.pypi.org [https://test.pypi.org/project/taperable-helix/]
is good:

bump2version patch # param maybe: major | minor | patch
make push-tags
make release-testpypi

Finally, assuming test.pypi.org [https://test.pypi.org/project/taperable-helix/] is good, push to pypi.org [https://test.pypi.org/project/taperable-helix/]:

make release

Credits

This code originated from a post [https://groups.google.com/g/cadquery/c/5kVRpECcxAU/m/7no7_ja6AAAJ] by Adam Urbanczyk to the CadQuery [https://github.com/cadquery/cadquery] forum [https://groups.google.com/g/cadquery].

Development Lead

	Wink Saville <wink@saville.com>

Contributors

None yet. Why not be the first?

Index

 F
 | H
 | I
 | L
 | P
 | R
 | T
 | V

F

 	
 	first_t (taperable_helix.Helix attribute)

H

 	
 	height (taperable_helix.Helix attribute)

 	Helix (class in taperable_helix)

 	
 	helix() (taperable_helix.Helix method)

 	HelixLocation (class in taperable_helix)

 	horz_offset (taperable_helix.HelixLocation attribute)

I

 	
 	inset_offset (taperable_helix.Helix attribute)

L

 	
 	last_t (taperable_helix.Helix attribute)

P

 	
 	pitch (taperable_helix.Helix attribute)

R

 	
 	radius (taperable_helix.Helix attribute)

 	(taperable_helix.HelixLocation attribute)

T

 	
 	taper_in_rpos (taperable_helix.Helix attribute)

 	
 	taper_out_rpos (taperable_helix.Helix attribute)

V

 	
 	vert_offset (taperable_helix.HelixLocation attribute)

 All modules for which code is available

	taperable_helix.helix

 Source code for taperable_helix.helix

from dataclasses import dataclass
from math import cos, degrees, pi, sin
from typing import Callable, Optional, Tuple

[docs]@dataclass
class HelixLocation:
 radius: Optional[float] = None
 """radius of helix if none h.radius"""

 horz_offset: float = 0
 """horizontal offset added to radius then x and y calculated"""

 vert_offset: float = 0
 """vertical added to z of radius"""

[docs]@dataclass
class Helix:
 """This class represents a taperable Helix.

 The required attributes are radius,
 pitch and height. Thse attributes create simple single line helix.
 But the primary purpose for Helix is to create a set of helical "wires"
 using non-zero values for taper_rpos, horz_offset and vert_offset to
 define solid helixes that can taper at each end to a point.

 This is useful for creating internal and external threads for nuts and
 bolts. This is accomplished by invoking helix() multiple times with
 same radius, pitch, taper_rpos, inset_offset, first_t, and last_t.
 But with different HelixLocation radius, horz_offset and vert_offset.

 Each returned function will then generate a helix defining an edge
 of the thread. The edges can be used to make faces and subsequently
 a solid of the thread. This can then be combined with the "core" objects
 which the threads are "attached" using a "union" operator.
 """

 radius: float
 """radius of the basic helix."""

 pitch: float
 """pitch of the helix per revolution. I.e the distance between the
 height of a single "turn" of the helix.
 """

 height: float
 """height of the cyclinder containing the helix."""

 taper_out_rpos: float = 0
 """taper_out_rpos is a decimal number with an inclusive range of 0..1
 such that (taper_out_rpos * t_range) defines the t value where tapering
 out ends, it begins at t == first_t. A ValueError exception is raised
 if taper_out_rpos < 0 or > 1 or taper_out_rpos > taper_in_rpos.
 Default is 0 which is no out taper.
 """

 taper_in_rpos: float = 1
 """taper_in_rpos: is a decimal number with an inclusive range of 0..1
 such that (taper_in_rpos * t_range) defines the t value where tapering
 in begins, it ends at t == last_t. A ValueError exception is raised
 if taper_out_rpos < 0 or > 1 or taper_out_rpos > taper_in_rpos.
 Default is 1 which is no in taper.
 """

 inset_offset: float = 0
 """inset_offset: the helix will start at z = inset_offset and will
 end at z = height - (2 * inset_offset). Default 0.
 """

 first_t: float = 0
 """first_t is the first t value passed to the returned function. Default 0"""

 last_t: float = 1
 """last_t is the last t value passed to the returned function. Default 1"""

[docs] def helix(
 self, hl: Optional[HelixLocation] = None
) -> Callable[[float], Tuple[float, float, float]]:
 """This function returns a Function that is used to generates points
 on a helix.

 It takes an optional HelixLocation which refines the location of the
 final helix when its tapered. If HelixLocation is None then the radius
 is Helix.radius and horz_offset and vert_offset will be 0. If its not None
 HelixLocation.radius maybe None, in which case Helix.radius will be used.
 and HelixLocation.horz_offset will be added to the radius and used to
 calculate x and y. The HelixLocation.vert_offset will be added to z.

 This function returns a function, f. The funciton f that takes one parameter,
 an inclusive value between first_t and last_t. We then define
 t_range=last_t-first_t and the rel_height=(last_t-t)/t_range. The rel_height
 is the relative position along the "z-axis" which is used to calculate function
 functions returned tuple(x, y, z) for a point on the helix.

 Credit: Adam Urbanczyk from cadquery [forum post](https://groups.google.com/g/cadquery/c/5kVRpECcxAU/m/7no7_ja6AAAJ)

 :param hl: Defines a refinded location when the helix is tapered
 :returns: A function which is passed "t", an inclusive value between first_t
 and last_t and returns a 3D point (x, y, z) on the helix as a
 function of t.
 """
 if self.taper_out_rpos > self.taper_in_rpos:
 raise ValueError(
 f"taper_out_rpos:{self.taper_out_rpos} > taper_in_rpos:{self.taper_in_rpos}"
)

 if self.taper_out_rpos < 0 or self.taper_out_rpos > 1:
 raise ValueError(
 f"taper_out_rpos:{self.taper_out_rpos} should be >= 0 and <= 1"
)

 if self.taper_in_rpos < 0 or self.taper_in_rpos > 1:
 raise ValueError(
 f"taper_in_rpos:{self.taper_in_rpos} should be >= 0 and <= 1"
)

 # Being "Tricky" to be flexible
 if hl is None:
 hl = HelixLocation(self.radius)
 elif hl.radius is None:
 hl.radius = self.radius

 # Reduce the height by 2 * inset_offset. Threads start at inset_offset
 # and end at height - inset_offset
 helix_height: float = self.height - (2 * self.inset_offset)

 # The number or revolutions of the helix within the helix_height
 # set to 1 if pitch or helix_height is 0
 turns: float = (
 self.pitch / helix_height if self.pitch != 0 and helix_height != 0 else 1
)

 # With this DISABLED points t_range will be negative
 # when self.last_t < self.first_t. This causes rel_height in "f"
 # to be negative and as a consequence # the values
 # generated by "f" will always be the same order.
 # See test_helix_backwards.
 #
 # If we ENABLE the code below and swap the order
 # if self.last_t < self.first_t then test_helix_backwards will
 # fail because the order of points in the resulting
 # array will be in reversed order.
 #
 # if self.last_t < self.first_t:
 # self.last_t, self.first_t = self.first_t, self.last_t

 t_range: float = self.last_t - self.first_t

 taper_out_range: float = t_range * self.taper_out_rpos
 taper_out_ends: float = (
 self.first_t + taper_out_range
 if taper_out_range > 0
 else min(self.first_t, self.last_t)
)

 taper_in_range: float = t_range * (1 - self.taper_in_rpos)
 taper_in_starts: float = (
 self.last_t - taper_in_range
 if taper_in_range > 0
 else max(self.first_t, self.last_t)
)

 # print(f"helix: ft={self.first_t:.4f} lt={self.last_t:.4f} tr={t_range:.4f}")
 # print(f"helix: tor={taper_out_range:.4f} toe={taper_out_ends:.4f}")
 # print(f"helix: tir={taper_in_range:.4f} tis={taper_in_starts:.4f}")

 def func(t: float) -> Tuple[float, float, float]:
 """
 Return a tuple(x, y, z)
 :param t: A value between self.first_t .. self.last_t inclusive
 """

 # This if statement is needed to satisfy mypy this is already
 # guaranteed in helix() above so the if statement is always
 # False. Furthermore this means the raise line is untestable.
 # Hopefully this can be fixed in the future.
 if (hl is None) or (hl.radius is None):
 raise ValueError("hl or hl.radius is None, should never happen")

 taper_angle: float
 toffset: float = t - self.first_t
 rel_height: float = toffset / t_range if t_range != 0 else 0

 # print(f"f: t={t:.4f}")
 # print(f"f: tor={taper_out_range:.4f} toe={taper_out_ends:.4f}")
 # print(f"f: tir={taper_in_range:.4f} tis={taper_in_starts:.4f}")
 if t < taper_out_ends:
 # Taper out from a point, taper_scale will be between 0 and 1
 # This code path is used when t < taper_out and this helix
 # will smoothly taper from a point as taper angle starts at 0
 # and increases to p/2.
 # print(f"f: out t={t:.4f} < taper_out_ends:{taper_out_ends}")
 taper_angle = pi / 2 * (t - self.first_t) / taper_out_range
 elif t <= taper_in_starts:
 # No tapering, taper_scale == 1
 # print(f"f: no t={t:.4f} >= taper_out_ends:{taper_out_ends} <= taper_in_starts:{taper_in_starts}")
 taper_angle = pi / 2
 else:
 # This code path is used when t > taper_in_starts and the this helix
 # will smoothly taper to a point as taper angle starts at p/2
 # and decrease to 0.
 # print(f"f: in t={t:.4f} > taper_in_starts:{taper_in_starts}")
 taper_angle = pi / 2 * (self.last_t - t) / taper_in_range

 # print(f"taper_angle={taper_angle}")
 taper_scale: float = sin(taper_angle)

 r: float = hl.radius + (hl.horz_offset * taper_scale)
 a: float = (2 * pi / turns) * rel_height

 x: float = r * sin(-a)
 y: float = r * cos(a)
 z: float = (
 (helix_height * (rel_height if self.pitch != 0 else 1))
 + (hl.vert_offset * taper_scale)
 + self.inset_offset
)

 result: Tuple[float, float, float] = (x, y, z)
 # print(f"f: tpa={degrees(taper_angle):.4f} tps={taper_scale:.4f} r={r:.4f} a={degrees(a):.4f}")
 # print(f"f: t={t:.4f} toffset={toffset:.4f} rh={rel_height:.4f} result={result}")
 return result

 return func

 nav.xhtml

 Table of Contents

 		
 Welcome to taperable_helix’s documentation!

 		
 Package Docs 0.8.17

 		
 Installation

 		
 Stable release

 		
 Test release from testpypi

 		
 From sources

 		
 Uninstall

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

_static/minus.png

_static/plus.png

_static/file.png

